A hidrogéngazdaság szerepe a közlekedési ágazat zöld átállásában – a hidrogén meghajtású járművekkel kapcsolatos kutatások
DOI:
https://doi.org/10.55348/KM.20Kulcsszavak:
hidrogéngazdaság, hidrogénmeghajtású jármű, elektromos jármű, hidrogén-üzemanyagcella, hidrogéntermelésAbsztrakt
A közlekedési ágazat környezetterhelése és energiaigénye az elmúlt időszakban paradigmaváltásra késztette az ágazat meghatározó gyártóit és fejlesztőit. A kutatások olyan új megoldások kidolgozására irányulnak, amelyek az ágazat negatív környezeti mutatóit, fokozott energia szükségletét hivatottak mérsékelni. A kutatási fókuszterületek egyik kiemelkedő szegmense a hidrogéngazdaság és a hidrogén meghajtású gépjárművek fejlesztése. A tanulmány az ezzel kapcsolatos legújabb kutatási eredményeket foglalja össze, rávilágítva a technológia piaci térnyerését befolyásoló legfontosabb tényezőkre.
Hivatkozások
Abergel, T.; Bunsen, T.; Gorner, M.; Leduc, P.; Pal, S.; Paoli, L.; Raghavan, S.; Tattini, J.; Teter, J.; Wachche, S.; et al. Global EV Outlook 2020|Entering the Decade of Electric Drive? IEA: Paris, France, 2020.
Agarwal, O.P.; Jhunjhunwala, A.; Kaur, P.; Yadav, N.; Chakrabarty, S.; Kumar, P.; Pai, M.; Bhatt, A. A Guidance Document on Accelerating Electric Mobility in India; WRI India: Mumbai, India, 2019.
Agnolucci, P., & McDowall, W. (2013). Designing future hydrogen infrastructure: Insights from analysis at different spatial scales. International journal of hydrogen energy, 38(13), 5181-5191.
https://doi.org/10.1016/j.ijhydene.2013.02.042
Ahmadi, P., & Khoshnevisan, A. (2022). Dynamic simulation and lifecycle assessment of hydrogen fuel cell electric vehicles considering various hydrogen production methods. International Journal of Hydrogen Energy, 47(62), 26758-26769.
https://doi.org/10.1016/j.ijhydene.2022.06.215
Ahmadi, P., Torabi, S. H., Afsaneh, H., Sadegheih, Y., Ganjehsarabi, H., & Ashjaee, M. (2020). The effects of driving patterns and PEM fuel cell degradation on the lifecycle assessment of hydrogen fuel cell vehicles. International Journal of Hydrogen Energy, 45(5), 3595-3608.
https://doi.org/10.1016/j.ijhydene.2019.01.165
Anwar, Muhammad Azfar - Dhir, Amandeep - Jabeen, Fauzia - Zhang, Qingyu
Arbis, D., Rashidi, T.H., Dixit, V.V., Vandebona, U., 2016. Analysis and planning of bicycle parking for public transport stations. Int. J. Sustain. Transport. 10 (6), 495–504. https://doi.org/10.1080/15568318.2015.1010668.
https://doi.org/10.1080/15568318.2015.1010668
Bachand-Marleau, J., Larsen, J., El-Geneidy, A.M., 2011. Much-Anticipated Marriage of Cycling and Transit: How Will It Work? Transp. Res. Rec. 2247 (1), 109–117.
https://doi.org/10.3141/2247-13.
Balat, M. (2005). Current alternative engine fuels. Energy sources, 27(6), 569-577.
https://doi.org/10.1080/00908310490450458
Balcombe, P., Speirs, J., Johnson, E., Martin, J., Brandon, N., & Hawkes, A. (2018). The carbon credentials of hydrogen gas networks and supply chains. Renewable and Sustainable Energy Reviews, 91, 1077-1088.
https://doi.org/10.1016/j.rser.2018.04.089
Ball, M., & Wietschel, M. (2009). The future of hydrogen–opportunities and challenges. International journal of hydrogen energy, 34(2), 615-627.
https://doi.org/10.1016/j.ijhydene.2008.11.014
Barbieri, D.M., B. Lou, M. Passavanti, C. Hui, I. Hoff, D. Antunes Lessa, G. Sikka, et al. 2021. “Impact of COVID-19 Pandemic on Mobility in Ten Countries and Associated Perceived Risk for All Transport Modes.” PLOS ONE 16 (2): e0245886. https://doi. org/10.1371/journal.pone.0245886.
Barrios, J. M., & Hochberg, Y. V. 2020. Risk perception through the lens of politics in the time of the COVID-19 pandemic (No. w27008). National Bureau of Economic Research.
https://doi.org/10.3386/w27008.
Bhandari, R., Trudewind, C. A., & Zapp, P. (2014). Life cycle assessment of hydrogen production via electrolysis–a review. Journal of cleaner production, 85, 151-163.
https://doi.org/10.1016/j.jclepro.2013.07.048
Bhaskar, A., Assadi, M., & Nikpey Somehsaraei, H. (2020). Decarbonization of the iron and steel industry with direct reduction of iron ore with green hydrogen. Energies, 13(3), 758.
https://doi.org/10.3390/en13030758
Bigra, E.M.; Connelly, E.; Gorner, M.; Lowans, C.; Paoli, L.; Tattini, J.; Teter, J.; LeCroy, C.; MacDonnell, O.; Welch, D.; et al. Global EV Outlook 2021|Accelerating Ambitions Despite the Pandemic; IEA: Paris, France, 2021.
Boukhanouf, R. Electric Vehicles: V2G for Rapid, Safe, and Green EV Penetration. Energies 2022, 15, 803. https://doi.org/10.3390/ en15030803
Buehler, R., Pucher, J., 2021. COVID-19 Impacts on Cycling, 2019–2020. Transport Reviews 41 (4), 393–400. https://doi.org/10.1080/01441647.2021.1914900.
Chen, Y., Lan, L., Hao, Z., & Fu, P. (2022). Cradle-grave energy consumption, greenhouse gas and acidification emissions in current and future fuel cell vehicles: study based on five hydrogen production methods in China. Energy Reports, 8, 7931-7944.
https://doi.org/10.1016/j.egyr.2022.06.021
Cho, S. M., Kim, C., Kim, K. S., & Kim, D. K. (2021). Lightweight hydrogen storage cylinder for fuel cell propulsion systems to be applied in drones. International Journal of Pressure Vessels and Piping, 194, 104428.
https://doi.org/10.1016/j.ijpvp.2021.104428
Cui, Q., He, L., Liu, Y., Zheng, Y., Wei, W., Yang, B., & Zhou, M. (2021). The impacts of COVID-19 pandemic on China’s transport sectors based on the CGE model coupled with a decomposition analysis approach. Transport Policy, 103, 103-115.
https://doi.org/10.1016/j.tranpol.2021.01.017
Dagdougui, H. (2012). Models, methods and approaches for the planning and design of the future hydrogen supply chain. International Journal of Hydrogen Energy, 37(6), 5318-5327.
https://doi.org/10.1016/j.ijhydene.2011.08.041
Dawood, F., Anda, M., & Shafiullah, G. M. (2020). Hydrogen production for energy: An overview. International Journal of Hydrogen Energy, 45(7), 3847-3869.
https://doi.org/10.1016/j.ijhydene.2019.12.059
Dincer, I. (2012). Green methods for hydrogen production. International journal of hydrogen energy, 37(2), 1954-1971.
Dyatkin, B. (2018). Energy focus: structural water plays key role in hybrid energy-storage device. MRS Bulletin, 43(8), 567-568.
https://doi.org/10.1016/j.ijhydene.2011.03.173
Ehsani, M.; Gao, Y.; Longo, S.; Ebrahimi, K.M. Modern Electric, Hybrid Electric, And Fuel Cell Vehicles; CRC Press: Boca Raton, FL, USA, 2018.
Engel, H., Hensley, R., Knupfer, S., & Sahdev, S. (2018). Charging ahead: Electric-vehicle infrastructure demand. McKinsey Center for Future Mobility, 8.
Fiorello, D.; Zani, L. EU Survey on Issues Related to Transport and Mobility; JRC Science and Policy Report: Sevile, Spain, 2015.
Foorginezhad, S., Mohseni-Dargah, M., Falahati, Z., Abbassi, R., Razmjou, A., & Asadnia, M. (2021). Sensing advancement towards safety assessment of hydrogen fuel cell vehicles. Journal of Power Sources, 489, 229450.
https://doi.org/10.1016/j.jpowsour.2021.229450
Griffiths, S., Sovacool, B. K., Kim, J., Bazilian, M., & Uratani, J. M. (2021). Industrial decarbonization via hydrogen: A critical and systematic review of developments, socio-technical systems and policy options. Energy Research & Social Science, 80, 102208.
https://doi.org/10.1016/j.erss.2021.102208
Grüger, F., Dylewski, L., Robinius, M., & Stolten, D. (2018). Carsharing with fuel cell vehicles: Sizing hydrogen refueling stations based on refueling behavior. Applied energy, 228, 1540-1549.
https://doi.org/10.1016/j.apenergy.2018.07.014
Hayes, J. G., & Goodarzi, G. A. (2018). Electric powertrain: energy systems, power electronics and drives for hybrid, electric and fuel cell ehicles.
DOI:10.1002/9781119063681
IEA. (2021). Global Hydrogen Review 2021. Paris, France: IEA.
Inci et al (2022): A choice experiment on preferences for electric and hybrid cars. Transportation Research Part D.
Jovan, D. J., & Dolanc, G. (2020). Can green hydrogen production be economically viable under current market conditions. Energies, 13(24), 6599.
https://doi.org/10.3390/en13246599
Kebriaei, M.; Niasar, A.H.; Asaei, B. Hybrid electric vehicles: An overview. In Proceedings of the 2015 International Conference on Connected Vehicles and Expo (ICCVE), Shenzhen, China, 19–23 October 2015.
Khzouz, M., Gkanas, E. I., Shao, J., Sher, F., Beherskyi, D., El-Kharouf, A., & Qubeissi, M. A. (2020). Life cycle costing analysis: Tools and applications for determining hydrogen production cost for fuel cell vehicle technology. Energies, 13(15), 3783.
https://doi.org/10.3390/en13153783
Kurzweil, P.; Garche, J. Overview of Batteries for Future Automobiles. In Lead-Acid Batteries for Future Automobiles; Elsevier: Amsterdam, The Netherlands, 2017; pp. 27–96.
https://doi.org/10.1016/B978-0-444-63700-0.00002-7
Lahnaoui, A., Wulf, C., & Dalmazzone, D. (2021). Optimization of hydrogen cost and transport technology in France and Germany for various production and demand scenarios. Energies, 14(3), 744.
https://doi.org/10.3390/en14030744
Li, L., Manier, H., & Manier, M. A. (2019). Hydrogen supply chain network design: An optimization-oriented review. Renewable and Sustainable Energy Reviews, 103, 342-360.
https://doi.org/10.1016/j.rser.2018.12.060
Lin, B.; Wu, W. The impact of electric vehicle penetration: A recursive dynamic CGE analysis of China. Energy Econ. 2021, 94, 105086.
https://doi.org/10.1016/j.eneco.2020.105086
Lipman, TE, Elke, M. és Lidicker, J. (2018). Hidrogén-üzemanyagcellás elektromos járművek teljesítménye és a felhasználói válasz értékelése: Egy kiterjesztett járművezetői vizsgálat eredményei. International Journal of Hydrogen Energy, 43 (27), 12442-12454.
https://doi.org/10.1016/j.ijhydene.2018.04.172
Martins, A. H., Rouboa, A., & Monteiro, E. (2022). On the green hydrogen production through gasification processes: A techno-economic approach. Journal of Cleaner Production, 135476.
https://doi.org/10.1016/j.jclepro.2022.135476
Maryam, S. (2017). Review of modelling approaches used in the HSC context for the UK. International Journal of Hydrogen Energy, 42(39), 24927-24938.
https://doi.org/10.1016/j.ijhydene.2017.04.303
McKerracher, C.; Izadi-Najafabadi, A.; O’Donovan, A.; Albanese, N.; Soulopolous, N.; Doherty, D.; Boers, M.; Fisher, R.; Cantor, C.; Frith, J.; et al. Electric Vehicle Outlook (EVO) 2020; BloombergNEF (BNEF): London, UK, 2020.
McKerracher, C.; O’Donovan, A.; Albanese, N.; Soulopoulos, N.; Doherty, D.; Boers, M.; Fisher, R.; Cantor, C.; Frith, J.; Mi, S.; et al. Electric Vehicle Outlook (EVO) 2021; BloombergNEF (BNEF): London, UK, 2021.
Mirzaeian, M.; Abbas, Q.; Hunt, M.R.C.; Galeyeva, A.; Raza, R. Na-Ion Batteries. Adv. Funct. Mater. 2021, 23, 947–958.
https://doi.org/10.1016/B978-0-12-815732-9.00052-8
Moliner, R.; Lázaro, MJ; Suelves, I. A hidrogéngazdaság felé való szakadék áthidalására szolgáló stratégiák elemzése. Int. J. Hydrogen Energy 2016, 41, 19500–19508.
https://doi.org/10.1016/j.ijhydene.2004.10.006
Moneti, M., Di Carlo, A., Bocci, E., Foscolo, P. U., Villarini, M., & Carlini, M. (2016). Influence of the main gasifier parameters on a real system for hydrogen production from biomass. International Journal of Hydrogen Energy, 41(28), 11965-11973.
https://doi.org/10.1016/j.ijhydene.2016.05.171
Mui, S.; Shelby, M.; Chartier, D.; Ganss, D. Plug-In Hybrids: A Scenario Analysis; US Environmental Protection Agency: Washington, DC, USA, 2007.
Newborough, M., & Cooley, G. (2020). Developments in the global hydrogen market: The spectrum of hydrogen colours. Fuel Cells Bulletin, 2020(11), 16-22.
https://doi.org/10.1016/S1464-2859(20)30546-0
Noussan, M., Raimondi, P. P., Scita, R., & Hafner, M. (2020). The role of green and blue hydrogen in the energy transition—A technological and geopolitical perspective. Sustainability, 13(1), 298.
https://doi.org/10.3390/su13010298
Panchenko, V. A., Daus, Y. V., Kovalev, A. A., Yudaev, I. V., & Litti, Y. V. (2022). Prospects for the production of green hydrogen: Review of countries with high potential. International Journal of Hydrogen Energy.
https://doi.org/10.1016/j.ijhydene.2022.10.084
Pickett, L.; Winnet, J.; Carver, D.; Bolton, P. Electric Vehicles and Infrastructure; House of Commons Library: London, UK, 2021.
Pollet, B. G., Staffell, I., Shang, J. L., & Molkov, V. (2014). Fuel-cell (hydrogen) electric hybrid vehicles. In Alternative Fuels and Advanced Vehicle Technologies for Improved Environmental Performance (pp. 685-735). Woodhead Publishing.
https://doi.org/10.1533/9780857097422.3.685
Puig-Arnavat, M., Bruno, J. C., & Coronas, A. (2010). Review and analysis of biomass gasification models. Renewable and sustainable energy reviews, 14(9), 2841-2851.
Qin, N.; Raissi, A.; Brooker, P. Analysis of Fuel Cell Vehicle Developments; The Florida Solar Energy Center (FSEC): Cocoa, FL, USA, 2014.
http://www.fsec.ucf.edu/en/publications/pdf/FSEC-CR-1987-14.pdf
Quan, S., Wang, Y. X., Xiao, X., He, H., & Sun, F. (2021). Real-time energy management for fuel cell electric vehicle using speed prediction-based model predictive control considering performance degradation. Applied Energy, 304, 117845.
https://doi.org/10.1016/j.apenergy.2021.117845
Rifkin, J. (2002). The hydrogen economy: The creation of the worldwide energy web and the redistribution of power on earth. Penguin.
Rivkin, C. H. (2016). Hydrogen Fuel Cell Vehicle Regulations, Codes, and Standards. Hydrogen Energy and Vehicle Systems, 2010(2020), 311.
Sato, F.E.K.; Nakata, T. Energy consumption analysis for vehicle production through a material flow approach. Energies 2020, 13, 2396.
https://doi.org/10.3390/en13092396
Siddiquei, Ahmad Nabeel (2023): Unconventional green transport innovations in the post-COVID-19 era. A trade-off between green actions and personal health protection, Journal of Business Research, 155, DOI - https://doi.org/10.1016/j.jbusres.2022.113442
Singh, V., Gupta, K., Agarwal, A., & Chakrabarty, N. (2022). Psychological impacts on the travel behaviour post Covid-19. Asian Transport Studies, 8, 100087.
https://doi.org/10.1016/j.eastsj.2022.100087
Standage, T. The Lost History of the Electric Car—And What It Tells Us about the Future of Transport. 2021. Available online: https://www.theguardian.com/technology/2021/aug/03/lost-history-electric-car-future-transport (accessed on 21 December 2021).
Stephens-Romero, S. D., Brown, T. M., Kang, J. E., Recker, W. W., & Samuelsen, G. S. (2010). Systematic planning to optimize investments in hydrogen infrastructure deployment. International journal of hydrogen energy, 35(10), 4652-4667.
https://doi.org/10.1016/j.ijhydene.2010.02.024
Tanç, B., Arat, H. T., Conker, Ç., Baltacioğlu, E., & Aydin, K. (2020). Energy distribution analyses of an additional traction battery on hydrogen fuel cell hybrid electric vehicle. International Journal of Hydrogen Energy, 45(49), 26344-26356.
https://doi.org/10.1016/j.ijhydene.2019.09.241
Tiikkaja, H., & Viri, R. (2021). The effects of COVID-19 epidemic on public transport ridership and frequencies. A case study from Tampere, Finland. Transportation Research Interdisciplinary Perspectives, 10, 100348. DOI100348. 10.1016/j.trip.2021.100348.
https://doi.org/10.1016/j.trip.2021.100348
Wappler, M., Unguder, D., Lu, X., Ohlmeyer, H., Teschke, H., & Lueke, W. (2022). Building the green hydrogen market–Current state and outlook on green hydrogen demand and electrolyzer manufacturing. International Journal of Hydrogen Energy.
https://doi.org/10.1016/j.ijhydene.2022.07.253
Wikramanayake, E., Acharya, P. V., Kapner, M., & Bahadur, V. (2021, April). Green hydrogen-based energy storage in Texas for decarbonization of the electric grid. In 2021 IEEE Green Technologies Conference (GreenTech) (pp. 409-415). IEEE.
https://doi.org/10.1109/GreenTech48523.2021.00070
Yue, M., Lambert, H., Pahon, E., Roche, R., Jemei, S., & Hissel, D. (2021). Hydrogen energy systems: A critical review of technologies, applications, trends and challenges. Renewable and Sustainable Energy Reviews, 146, 111180.
https://doi.org/10.1016/j.rser.2021.111180
Zhang, C.; Wei, Y.L.; Cao, P.F.; Lin, M.C. Energy storage system: Current studies on batteries and power condition system. Renew. Sustain. Energy Rev. 2018, 82, 3091–3106.
##submission.downloads##
Megjelent
Folyóirat szám
Rovat
License
Copyright (c) 2023 Prof. dr. Boros Anita
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.